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Anomalous ion and impurity heating in reversed field pinch plasmas is addressed. Previous work
#N. Mattor et al., Comments Plasma Phys. Controlled Fusion 15, 65 !1992"$, which calculated the
heating of bulk ions by gyro and Landau resonances with turbulent fluctuations cascading from
unstable tearing modes, is extended to impurity species measured in Madison symmetric torus
!MST". The heavier mass of impurities allows gyro-resonant heating at lower frequencies where
more energy is present in the fluctuations. A 0D transport model is used to examine heating rates
under various time-dependent, experimental heating scenarios, such as a sawtooth crash. Impurity
heating rates calculated for impurities found in MST are comparable to observed rates inferred in the
impurity temperature rise during sawtooth events. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2998829$

I. INTRODUCTION

In reversed-field pinch !RFP" plasmas, strong ion heat-
ing with Ti!Te is frequently observed in standard Ohmic
discharges.1–4 This observation contradicts the simple notion
that in an Ohmically heated plasma, energy is predominantly
dissipated by the current into electron heat as characterized
by Spitzer resistivity and Ohm’s law. Ions are then heated by
frictional drag !through collisions with electrons". Assuming
finite heat losses, this process will always result in Ti"Te.
The unknown physical process raising Ti above a value con-
sistent with collisional transfer from Ohmically heated elec-
trons is usually referred to as anomalous ion heating.
Anomalous ion heating has been observed in several experi-
ments, and is well documented. For example, in ZETA !Ref.
2" and present-day machines,1,3,4 ion energies have been ob-
served to exceed estimates from Ohmic heating and colli-
sional transfer from electrons. In the Caltech Encore device,5

anomalously fast !%40# classical Ohmic" ion heating was
observed. Similarly, during a sawtooth crash in the Madison
symmetric torus !MST" RFP,1 the ion temperature can spon-
taneously increase by several hundred eV in about 100 $s.
The corresponding change in ion thermal energy is approxi-
mately dTi /dt%3#106 eV /s. During this period, the elec-
tron temperature deteriorates, possibly due to enhanced
anomalous electron heat losses. This evidence points to a
collisionless ion heating mechanism that is quite separate
from electron thermal processes.

Anomalous ion heating is not understood despite exten-
sive work on the subject. Numerous mechanisms have been
proposed, including, frictional drag, ion Landau damping of
Alfvén waves, electron cyclotron resonant !ECR" damping
of Alfvén waves, viscous damping,6 stochastic heating,5,7 ion
cyclotron damping of Alfvén waves,8 heating from slow
wave continuua,9 heating by emission from electron
clumps,10 and reconnection. None of these mechanisms has
been confirmed experimentally in a convincing way, and
many have difficulty explaining aspects of observations.

Frictional drag, for example, leads to a very low value of
the heating rate. Quantitatively, the change in thermal
energy due to frictional drag is %dTi /dt%e2E2&ei /mi
%150–300 eV /s !&ei is the electron-ion collision time and %
is the Boltzmann constant". This is several orders of magni-
tude lower than the observed heating rate. If particles are
resonant, ion Landau damping or ECR damping can be an
efficient heating mechanism. However, in the RFP, ECR
damping is ineffective since typical frequencies are too low
!'()e", yielding heating rates that are several orders of
magnitude lower than observations. In a similar vein, Landau
damping has been widely regarded as ineffective except at
high frequencies, because phase velocities are too low
!' /k(Vti". The ion heating from viscous damping of the
flow associated with tearing modes requires either an exces-
sively high value of the viscosity, or flows confined to layers
that are considerably narrower than those observed in
experiment.6 Furthermore, this mechanism does not predict a
cessation of heating when the reversal layer is not present in
the plasma, contrary to observations. Stochastic heating was
found useful to explain ion heating in Encore.5 However, an
estimate of stochastic heating in MST, shows that it is too
small. The estimate follows Refs. 7 and 11, yielding
%dT& /dt= !m /2"!e /m"2*&!0"%105 eV /s, where *&!0" is a
square of a time average of the electric field component
along the mean magnetic field. This yields a rate that is too
small by more than an order of magnitude. Note that most of
the ion heating mechanisms mentioned in the previous para-
graph generally affect T& differently from T!. Evidence
shows that while ion heating is isotropic in MST,12 it is not
so in EXTRAP-T2,4 where it was found that T&+T!. Thus,
more than one mechanism might be active in RFP plasmas.

In this paper we extend a mechanism suggested earlier
by Mattor et al.8 They showed that global tearing modes
driving a cascade to high frequency produce a non Spitzer
energy deposition. This work posits an energy budget in
which the input power partly sustains the equilibrium !m
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=0, n=0" and heats the electrons !by finite resistivity", with
the remaining energy driving the m=1 tearing modes. The
tearing modes drive a turbulent energy cascade to higher k,
where it is absorbed by the working gas ions and electrons
through ion cyclotron damping and electron Landau damp-
ing. The viscosity does not play an important role in this
mechanism, and it does not rely on collisional equipartition.
The cascade has long been regarded as a feature of the RFP
fluctuation spectrum. The spectrum shows monotonic decay
extending to very high frequencies !f %1 MHz". This
mechanism is capable, in principle, of producing Ti+Te,
however, the amount of heating is sensitive to the spectrum
energy at the bulk-ion cyclotron resonance. In MST, the
spectrum decay leaves too little energy at the cyclotron reso-
nance to explain observations.

Recent observations in MST suggest that it is worth re-
examining this mechanism to include cyclotron resonance
heating of impurity ions. It has been discovered that high Z
impurities are heated more strongly than bulk ions, implying
T,+Ti+Te. Moreover, a closer look at the measurements in
MST !Ref. 1" and ZT-40M !Ref. 3" suggests that heating
rates satisfy a similar inequality,

-T,
-t
+
-Ti

-t
+
-Te

-t
. !1"

The cyclotron resonance occurs at lower frequencies for high
Z impurities than it does for hydrogen. In a decaying spec-
trum this yields higher fluctuation energy at the resonance
and stronger ion heating. Consequently it is possible for ob-
served impurity ion heating rates to match theory even if
direct cyclotron heating of the bulk ions is too weak. It must
then be shown that heating of bulk ions by collisional trans-
fer from the heavier impurity ions fits the observational data.

The observation that impurity ions are more strongly
heated than bulk ions suggests there may be a stronger link
than previously thought between ion heating in laboratory
plasmas and the solar corona. In the solar corona, ions re-
ceive more energy than electrons,13,14 and radiate or lose
energy to the transition region below. The precise physical
processes are a subject of current research. Data from the
Solar and Heliospheric Observatory !SOHO" show that the
temperature of the minority ions exceeds the proton
temperature.13,14 The temperature perpendicular to the mag-
netic field also exceeds the parallel temperature. The tem-
perature anisotropy is suggestive of cyclotron damping, al-
though the fluctuation frequencies are lower than the
cyclotron resonance frequency. Cyclotron resonance heating
rates for impurity ions have nonetheless been calculated for
the solar corona and provide a useful guide for our consid-
erations.

Here we apply this type of analysis to the RFP, assuming
that cascade energy is ion-cyclotron damped to heat the im-
purities. We use the energy budget of Mattor et al. to cali-
brate the total fluctuation energy in the RFP.8 A power-law
spectrum is assumed, with an index consistent with experi-
ment. A turbulent cascade, which transfers energy to higher
wave numbers, is continuously sustained by the large-scale
drive of global tearing instability. By extending the analysis

of Mattor to impurity resonances we retain the major ideali-
zation of that work. Mattor represented the magnetic fluctua-
tions of the RFP as unbounded Alfvén waves propagating
along the mean field, with intensities that decrease with
wavenumber according to the observed spectrum. This en-
abled the use of heating rates calculated in the literature from
the simple Alfvénic dispersion relation, '=k&VA, as the real
part of a consistent limiting root of the plasma
dielectric.9,15–20 Numerical solution shows that these analytic
expressions are reasonable for small k&. However, because
the damping is largest for largest k&, we will rely on numeri-
cal solutions.

The true experimental situation is sufficiently compli-
cated that we know of no set of consistent approximations
that reduces an exact theory to the Alfvén wave idealization
of Mattor et al. On the other hand, a number of congruences
between experiment and this idealization suggest that it is a
reasonable heuristic starting point for estimating heating
rates. The experimental fluctuations are neither unbounded
waves propagating along the mean field, nor the waves of an
unbounded turbulent Alfvén-wave cascade !which propagate
perpendicular to the mean field". Instead they are nonlinear
bound eigenstates of an inhomogeneous plasma, excited by
spectral energy transfer. These fluctuations propagate in tor-
oidal and poloidal directions with a phase velocity that ap-
pears to asymptote to the Alfvén speed for large wavenum-
ber. This is consistent with MHD fluctuations away from
resistive layers. The spectrum is asymmetric in wavenumber
space, showing energy depletion in a range that satisfies im-
purity cyclotron resonances with a parallel propagating
Alfvén wave, '=k&VA=),.

22 This is consistent with Mat-
tor’s Alfvén wave idealization. On the other hand, the spec-
trum has k!+k&, while the limit of the plasma dielectric that
gives '=k&VA requires k!.k&. Finite k! introduces coupling
to other branches of the plasma dispersion relation. At
present nothing is known experimentally about whether such
branches are excited in the cascade. Hence we calculate heat-
ing rates from the plasma dielectric, taking k! /k&.1 as the
limit that yields '=k&VA for the wave dispersion. A theory
that is more realistic will not only have k! /k&+1, but must
properly treat the fluctuations as nonlinearly excited, finite
width, -!.0, diamagnetic tearing modes subject to the ki-
netic dissipation of cyclotron resonance. This daunting set of
requirements is beyond our present scope, and is deferred to
future work.

The observed rise of impurity and bulk ion temperatures
resulting in T,+Ti+Te immediately after a sawtooth crash
leads us to investigate the idea that this inequality may result
from collisional energy transfer between anomalously heated
impurities and the bulk species, along with direct cyclotron
heating of bulk ions. To test this idea we incorporate impu-
rity and bulk cyclotron heating rates into a 0D transport
model that includes collisional transfer between species and
anomalous energy losses due to turbulence. The calculated
equilibration rates are sufficiently rapid !on the order of a
millisecond" that collisional transfer between impurity and
bulk ions plays a role in observed temperature evolution after
a sawtooth crash. The transport model also allows us to con-
sider the effect of collisional equilibration of anisotropic ion
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temperatures resulting from the perpendicular nature of cy-
clotron heating. In these analyses we consider a variety of
ion impurity species known to be present in MST discharges.
The principal result of this paper is that cyclotron heating of
impurities and bulk ions, along with collisional equilibration,
yields heating rates that are sufficient to account for the ob-
served rise in impurity and bulk temperatures. Lower density
plasmas are found to be hotter and more thermally aniso-
tropic.

This paper is organized as follows. In Secs. II A and
II B, we present the energy budget and relevant parameter
values for MST, which we take as our typical plasma. In Sec.
III we describe three calculations required as inputs to the
transport model. Ion heating is estimated by cyclotron damp-
ing of Alfvén waves in a cold, isotropic plasma, and is de-
scribed in Sec. III A. We briefly discuss electron heating in
Sec. III B. Conversion of wave energy to thermal energy is
described in Sec. III C. Simple collisional transfer processes
are examined in Sec. IV. Ion heating and collisional transfer
are incorporated into a 0D transport model in Sec. V. This
model is used to study temperature evolution under various
time-dependent, experimental heating scenarios, such as a
sawtooth crash. Conclusions are presented in Sec. VI.

II. ENERGY BUDGET FOR REVERSED FIELD PINCHES

A. Energy budget

In Fig. 1, we illustrate a flowchart of the energy budget
for RFP discharges. As with the original formulation,8 our
adaptation consists of various stages, each with its own
sources and sinks. In Fig. 1 each stage has been marked with
a circled letter ! A!, B!, C!, etc.". Important physical phenom-
ena involved in the energy budget are labeled inside rect-
angles. The energy and helicity flow are illustrated by the
direction of arrows.

Energy is introduced by the inductive drive, appearing as
poloidal field energy. This inductive drive sustains the Taylor
state and is the source of free energy for unstable tearing

modes !stage A! in Fig. 1". The unstable tearing modes have
m=1, where m is the poloidal wavenumber. After injection
into m=1 modes, energy participates in a dual cascade pro-
cess. A part of the energy is carried to the lower wave num-
bers with the inverse helicity cascade. The rest is carried to
the higher wavenumbers as a direct cascade. This branching
takes place at B!, in Fig. 1. The branching ratio is /for //inv,
where /for is the fraction of energy carried to small scale and
/inv is the fraction carried to large scale with helicity. The
branching ratio can be easily estimated using arguments in
Ref. 8. These arguments consider the helicity required to
sustain the equilibrium and calculate the energy /inv carried
with that helicity. The remaining cascade energy is /for. This
allows the branching ratio to be formulated in terms of the
anomalous loop voltage VL

anom, the Spitzer loop voltage VL
Sp,

and the Taylor state magnetic field configuration. From Eqs.
!12" and !17" of Ref. 8, we have

0for

0inv =
VL

anom

VL
Sp ' $a!J0

2 + J1
2" − J0J1

$a!J0
2 + J1

2" − 2J0J1
( , !2"

where J0=J0!$a" and J1=J1!$a" are Bessel functions, a is
the minor radius, $=2.4 /arev, and arev is the reversal radius.
From experiments, we know that VL

anom /VL
sp%4−10 and 1

=$a /2!1. These input values to Eq. !2" lead to the conclu-
sion that for typical parameters !i.e., VL

anom /VL
sp%5", 0for /0

%0.85. Therefore, more than half of all input energy is avail-
able for the forward cascade.

Stage C! represents the forward cascade of energy to
modes with successively higher values of n, but primarily
with m=1. This happens through three-wave interactions
with the m=0 mode. From stage C!, there are branches as-
sociated with different energy paths into charged particle
species through wave-particle resonance processes that re-
move energy from the cascade. In a homogeneous plasma the
cascade would be thought of as an Alfvénic cascade resulting
from nonlinear interactions between Alfvén wave packets
propagating oppositely along the field of large-scale fluctua-
tions. Because the process is nonlinear, energy is transferred
from the large scales !m=1,n=6−8 " to smaller scales
!m=1,n28". As explained earlier, we assume that waves
with n28 are Alfvén waves. Our prescription of calculating
heating from parallel propagating Alfvén waves results in the
same resonant frequency as the waves of a perpendicular
cascade if the critical balance hypothesis is satisfied.23 How-
ever, the representation of bound eigenstates by propagating
waves is an idealization, and will be replaced with a more
realistic treatment in future work. The experimental fluctua-
tion spectrum falls off with wavenumber and has been char-
acterized with a power law B̃23k−4, where 4 is a real num-
ber, typically greater than 1. This implies that the modes with
higher n values will have lower energy. In this work, we take
4=5 /3 for concreteness. The qualitative features of the
wavenumber spectrum can be obtained from Fig. 14 of
Ref. 1

The high n modes excited in the cascade ultimately ex-
change energy with particles. This kinetic energy is in turn
thermalized by collisions. The stage labeled G! marks the
energy given to electrons via electron Landau damping
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FIG. 1. The energy budget. The energy primarily enters the system as an
inductive drive. Available free energy destabilizes the m=1 modes, where-
upon, a part of the energy cascades to the higher n modes, from where it is
picked up by impurities and bulk ions by ion-cyclotron resonance. Here, k is
the helicity.
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!ELD". The remaining energy is channeled to ions and im-
purities via ion cyclotron resonance damping !ICR". The ion
cyclotron heating occurs in D! and E! in Fig. 1. Electron-ion,
electron-impurity, ion-impurity collision mechanisms have
been included into the energy budget for the sake of com-
pleteness. These mechanisms have been labeled as F! and

M!. At F! we represent the effects of impurity-ion collisions.
We assume that impurities, once heated, transfer their energy
to the bulk plasma by this method.

The stage H! represents the resistive electron heating
discussed earlier. This is just the Ohmic heating of electrons
associated with the equilibrium currents. As shown later, the
equilibration of electron temperature is mostly affected by
Ohmic heating H! and transport losses K!. Energy transfer to
electrons from electron Landau damping is negligible. The
energy transferred to particles can be lost from the plasma
through transport, either collisional or anomalous. These
losses appear at points I!, J!, and K! as ion, impurity, and
electron heat losses, respectively.

An example of energy distribution within the budget can
be gleaned from a sawtooth crash. During a crash in MST,
the changes in magnetic energy are much more dramatic than
the changes in thermal energy. Within a time of about
100 $s, the change in magnetic energy is usually 10–15 kJ,
while the corresponding gain in thermal energy is only
2–5 kJ. In the same amount of time, the temperature how-
ever doubles. Referring to the energy budget, the remaining
magnetic energy goes into heating the particles, restoring the
Taylor state, and confinement losses. The fluctuations close
to the cyclotron frequency will be spontaneously damped to
heat the particles, with a rate proportional to the square of the
fluctuation level.

B. Experimental parameters

To characterize the plasmas for which we calculate heat-
ing rates, we briefly overview parameter values for MST
plasmas in which ion heating has been studied. These plas-
mas have a density of 1013 cm−3, a magnetic field with a
toroidal component on axis of 0.25 T, and equal ion and
electron temperatures of 200 eV. These values apply to the
period between sawtooth crashes. We do not consider dis-
charges designed to optimize performance, which signifi-
cantly raise the temperature, density, and plasma beta value.
For the parameters quoted above the cyclotron frequency for
the majority deuterium species is 1.2#107 s−1, the Larmor
radius is 0.8 cm, and the plasma beta is slightly above 1%.
Impurity concentrations are important in the calculation of
heating and equilibration rates. Impurity concentrations are
not precisely known in MST. The prevalent impurities are
carbon !from the wall cover elements" and oxygen !from
water contamination". Spectroscopic measurements of
Bremsstrahlung radiation allow a direct estimate of Zeff, from
which impurity concentrations can be found using the defi-
nition Zeff= !),n,Z,

2" / !),n,Z,". The Zeff estimates are in the
range 3–4, from which a single impurity of fully stripped
carbon would have a concentration between 7% and 10%.
For O+5 the cyclotron frequency is 0.57 times the cyclotron
frequency of deuterium, the working gas ion. The Larmor

radius is 0.31 times the Larmor radius of deuterium. For the
MST spectrum, the wavenumber range of significant power,
including the cyclotron resonant range, has k!5,"0.2. Im-
purity collision times are discussed in Sec. IV.

Since the plasma beta is low !%1% ", typical Alfvénic
phase velocities exceed thermal velocities #*' /k&*%VA

=+!2 /6"V&,2V&,, where ' /k& is the typical phase velocity,
and VA is the Alfvén speed and V&, is the ion thermal speed$.
This means the response of the particles is slow compared to
typical perturbation time scales, i.e., the plasma wave dielec-
tric may be evaluated in the cold limit. Furthermore, VA /c
%4#10−3, where c is the speed of light. Thus in the simplest
approximation, we assume c2' /k&2V&,. In calculating
heating rates collisions may be neglected because )ci&ii%6
#103, where )ci is the bulk !deuterium" ion cyclotron fre-
quency. This allows us to use a collisionless dielectric tensor.

III. HEATING AND COLLISIONAL TRANSFER
IN THE ENERGY BUDGET

A. Alfvén wave damping in an isotropic plasma

Expressions comparable to the following appear in a va-
riety of references.18,27,28 Those that are necessary for evalu-
ating the RFP ion-heating physics as stipulated in the energy
budget are collected here, and written in a consistent nota-
tion. The expressions are based on a straightforward evalua-
tion of the cold plasma dielectric for k!

2 52.1 and k!.k&.
The dielectric tensor for an anisotropic, bi-Maxwellian

particle distribution in a plasma with several species indexed
by , is given by27

Kij!',k" = 4ij + )
,

'p,
2

'2 ,A,aij +
'2

k&
2V&,

2 bibj

+ )
s=−7

s=7

zs
,Z!zs

,"'A, +
' − k&U,

' − s), − k&U,
(

#Nij
,!',k,s"- , !3"

where A,= !T&, /T!,"−1 and zs
,= !'−s),−k&U,&"

/ !+2k&V&,", s is an integer that can be either positive or nega-
tive, 'p, is the plasma frequency, ), is the cyclotron fre-
quency, and U, is the relative drift velocity along the mag-
netic field. Hereafter U, will be taken as zero. We have
assumed that the plasma has a temperature T&, along the
mean magnetic field, which lies in the z-direction. In case the
plasma is thermally isotropic, A,=T& /T!−1=0. The
wavevector k is taken to lie in the x-z plane. Hence, b̂
= !0,0 ,1" and k= #sin!8" ,0 ,cos!8"$. The matrix elements of
Nij and aij appearing in Eq. !3" have been defined in Ref. 27.
We have used, N11=e−9,s2 /9,Is and a11=1. Here, Is!9" is a
modified Bessel function of argument 9=k!

2 52 and 5 is the
ion gyroradius. The function Z!z" is the plasma dispersion
function Z!z"= !1 /+:".−7

7 dt exp!−t2" / !t−z".
Following Refs. 29 and 27, Eq. !3" simplifies the disper-

sion relation for Alfvén waves to nA
2 =K11 /cos2!8", where

nA=ck /' is the refractive index of Alfvén waves. This can
be expressed as !writing k=k&"
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X3 = )
,

Y'pH,P, )
s=−7

7

Z!z,"N11!,,s" , !4"

where X=ck /)H, Y =' /)H, z,= P,!Y −s;," /X, where ;,
=Z, /M,, P,=c /+2V&,, 'pH,='p,

2 /)H
2 .

Note that Eq. !4" is a nonlinear equation in Y #because of
the dispersion function Z!z,"$, therefore, it must be solved
numerically for each X. Complete solution of Eq. !4" is ob-
tained using the Muller method21 with an initial guess for Y.
The complex valued dispersion function in Eq. !4" has been
evaluated using the algorithm of Ref. 32. The numerical so-
lution is plotted in Fig. 2 for two different truncations of the
summation over s, shown as the heavy solid line and the
broken line with dots and dashes. The other two lines are
common analytic approximations that will be discussed be-
low. If a single value s=1 is retained in the summation, the
solution for the real part of the frequency 'r asymptotes to
),=;,)H !dot-dashed line". The character of the solution
changes significantly if additional values for s are retained in
the sum. The heavy solid line shows the result for s
= /−1,0 ,10. Adding further values of s does not lead to sig-
nificant changes in the solution. The growth rate is not sen-
sitive to the truncation of the sum over s, and is essentially
the same for s=1, s= /−1,0 ,10, or less restrictive summa-
tions.

The difference in solutions for s=1 versus s= /−1,0 ,10
can be understood by examining the large-k asymptotic limit
of Eq. !4". In this limit the purely real left-hand side diverges
and can only be balanced by the right-hand side if it too
becomes real. For s=1 this requirement can be expressed as

arg Y + arg Z'P,!Y − ;,"
X

( = 0, !5"

where arg f denotes the phase of the complex number f . One
solution of Eq. !5" is arg Y =−: /2, arg Z=: /2, which re-

quires 'r /<→0 and Y −;,3'r+ i<−),→ i<, or 'r=),.
Because 'r is finite in this solution, 'r /<→0 implies that
<→7, i.e., this solution obtains in the asymptotic limit
k→7. This is precisely the behavior of the numerical solu-
tion for s=1 !dot-dashed line" of Fig. 2. The complexity
of the Z function makes it unlikely that there are other
solutions.

For s= /−1,0 ,10,

X3 = )
,

Y'pH,P,,Z'P,!Y − ;,"
X

( + Z'P,!Y + ;,"
X

(- = 0.

!6"

This equation has a solution with 'r=0, which can be seen
by substituting 'r=0 into Eq. !6". For 'r=0,

Z#P,!Y − ;,"/X$ + Z#P,!Y + ;,"/X$

= Z!*z,*'r=0" + Z!− *z,*'r=0
* "

= 2i Im Z!*z,*'r=0" , !7"

where the Z function parity property Z!−a*"=−#Z!a"$* has
been used. With this simplification, Eq. !6" becomes an ex-
pression that is solved to obtain the value of <,

X3 = −2 <'pH,P, Im Z!*z,*'r=0"N& . !8"

The condition 'r=0 is a critical part of the solution because
it guarantees that the right-hand side of Eq. !8" is real. It
must also be positive, and that requires Im Z!*z,*'r=0"+0, or
roughly, −<+),. Note that this root allows a range of <
values provided 'r=0. The value of < is determined by Eq.
!8", which requires that < Im Z→7 as X3→7. This is the
behavior evident in the heavy solid line of Fig. 2. Note that
this solution is nonresonant once 'r approaches 0. The no-
tion of propagating Alfvén waves is incompatible with 'r
=0; hence, we will cut off the sum over k at the value where
'r=0. It is clear from this analysis that the solution
with the truncation to s=1 does not have 'r=0 because it
does not include the conjugate pairing of Z functions.
Obviously, less restrictive truncations with s
= /−m ,−m+1, . . . ,−1,0 ,1 , . . . ,m−1, m0 retain the conjugate
pairings and therefore retain the solution with 'r=0. While
the solution with s=1 happens to fit common analytic ap-
proximations, its asymptote of 'r→), is an artifact of drop-
ping the crucial conjugate pairing with s=−1.

We now compare the solutions with common analytic
approximations. An approximation that is appropriate for the
cold plasma limit !which is well satisfied by the numerical
solution" and small damping rates !<('r" can be easily de-
rived from Eq. !4".

For this limit, we use the asymptotic expansion for z
+1: Z!z"1−z−1!1+1 /2z2"+ i=+!:"exp!−z2", where ==2.
We include only the effects of the fundamental harmonic
frequencies !i.e., s=−1,0 ,1". The real terms reduce to the
cold plasma dielectric tensor, which is written as
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FIG. 2. !a" Normalized real frequency !'r /)H" as a function of normalized
wavenumber k=ck /!H, obtained from Eq. !4" with s= /−1,0 ,10 !solid
line"; Eq. !4" with s=1 !dash-dotted line"; Eq. !10" !thin solid"; Eq. !12" with
9=0 !dotted line". !b" Normalized damping rate of the wave. Waves with
phase velocity Vph%c have been ignored.
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K11
cold =

c2k2

'r
2 = 1 + )

,

'p,
2

),
2 − 'r

2

2e−9,I1

9,
. !9"

Ignoring the coupling to the electromagnetic wave !'r=ck"
and assuming k!

2 52=9→0,

K11
cold =

c2k2

'r
2 = )

,

'p,
2

),
2 − 'r

2 . !10"

The above cited real part of the dispersion relation is illus-
trated in Fig. 2 as the thin solid line. The imaginary part !the
total damping rate <ion, summed over all species" is given
by27

<ion = )
,

+:

8

'p,
2

k&V&,
exp'− 2'r −),

+2k&V&,
32( . !11"

The above expressions are strictly valid only for low damp-
ing rates !*'r*. *)i* and <ion('r". Since <ion is proportional
to exp#−!'r−),"2 / !+2k&V&,"2$, the term R,
= *!'−)," / !k&V&,"* must be small to avoid exponentially
small cyclotron damping. The condition R,

2 /2"1, implies
the resonance condition '−),"+2k&V&,. Equation !10" can
be further simplified in the special case of low frequency
!'(),('p,", wherein we recover the shear Alfvén wave
with the usual dispersion relation '2=k&

2VA
2 . In Fig. 2, this is

indicated as a dotted line.
The parametric variation of the solution for various k!

2 5i
2

and density n is illustrated in Fig. 3. Changing either of these
parameters does not effect the dispersion or damping at high
k. The critical wavenumber kcrit !k at 'r%0" also remains
unchanged. The only observable changes happen at the low k
and low frequency limit. As illustrated in Fig. 3, the phase
velocity increases with 9,=9. A simple explanation of this
can be obtained from Eq. !9". For 'r(),, we have

c2k2

'r
2 = )

,

'p,
2

),
2 '2e−9I1

9
( , !12"

which further reduces to '=kzVA /+2e−9I1!9" /9, since
),'p,

2 /),
2 =c2 /VA

2 . Thus in a low frequency regime, the
Alfvén wave dispersion is modified. Now +2e−9I1!9" /9 is a
monotonically decreasing function of 9, therefore, the nor-
malized phase velocity VA

−1'r /k increases on increasing 9.
In Fig. 2 we also plot the real frequency, solved as the

root of Eq. !10", for a pure plasma !thin solid line". The
dotted line corresponds to '=k&VA. We have assumed a pure
helium plasma with Bo=0.4 T and ni=3.46#1018 m−3. The
initial temperature for each species is assumed to be about
540 eV. Note that in this figure the scale of the x-axis is
logarithmic so the Alfvén wave dispersion relation does not
appear as a straight line. In the range ck& /)H(1, where
' /)H is also small, the complete dispersion relation is close
to that of the Alfvén wave.

Using the parameters of Fig. 2!a", the variation of z> is
illustrated in Fig. 4!b". In this figure, the condition !z>!1" is
satisfied implying the plasma is cold.

B. Electron Landau damping

Apart from heating the ions via ion cyclotron damping,
the energy cascade can also lead to electron heating via ELD
as described in the energy budget. An estimate of this is
important because it may help explain why ions tend to be so
hot in RFP plasmas. To argue our point we assume the same
conditions on wave properties used previously to estimate
the electron dissipation and thus the branching ratio at point
C. These correspond to <.'r and 'r.',, where simple
analytic formulas and the numerical solution are in reason-
able agreement. For ELD under the wave conditions as-
sumed throughout, the dispersion relation can be generalized
from Eq. !3" by including the term K33 as in Ref. 27,
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< = −+:

8
2me

mi
31/2

kx
2k&VA

2Vs

)i
2 exp − !zo

e"2, !13"

where Vs= !me /m,"Ve. The above result is similar to Eq.
!2.265" of Ref. 27. The above approximation does not in-
clude any cyclotron resonance effects !'.)i", contributions
from minority species, or finite Larmor radius effects !k5
(1". If effects of a finite 9De are retained, the real frequency
is slightly modified as '2=k&

2VA
2!1+k&

2Vs
2 /)i

2", which is like
the usual Alfvén wave in the limit of small kx.

The above discussion relates to the dynamics at branch
point C! in Fig. 1. The ion cyclotron part is specific to D!
and E! while the electron Landau damping part is specific to

G!. The branching ratio at point C! can thus be calculated.
For this, we simply take the ratios of the two damping rates
computed above #Eqs. !11" and !13"$, yielding

!14"

The above equation neglects any energy that couples across
the narrow ICR resonances. It is possible that this fraction
may end up as electron or ion heat and is not accounted for.
This equation also assumes that the heating rate is directly
proportional to the damping rate of these waves, and that the
level of fluctuations is the same at both frequencies. This is
justified since we are looking at that fraction of electron Lan-
dau damping that is important on Alfvén time scales. The
branching ratio is given by

<ELD

<ICR
= 2me

m,
31/2

k29D
2+T,

Te
( 1. !15"

From this ratio we conclude that unless k29D
2 21, the most

important mechanism for heating the electrons is not electron
Landau damping.

In a similar fashion, we can also compute the relative
branching ratio between paths D! and E! !heating of bulk
ions and a single impurity",

0ion,

0ion6 =
<imp,

<imp6 = 2Z,
Z6
322$6
$,

31/22n,
n6
32T6

T,
31/2

. !16"

Here, $, is the ion mass expressed in units of proton mass,
Z, is the charge state, and T, is the temperature of species ,
expressed in eV. The above expression neglects the effect of
the term exp#−!R,

2 −R6
2"$, which may play an important role

away from resonance, and the resonant wavenumber.
This shows that the heating of a species is proportional

to the square of its charge state. It also shows ion heating
0ion, is directly proportional to impurity density n,. In the
mobile limiter experiments of HBTX-1B,30,31 it was found
that when the limiter was inserted into the plasma, the loop
voltage increased with the limiter insertion distance, as did
the ion temperature. A partial explanation of those experi-
ments can be made on the basis of the energy budget through
two effects. First, an increase of loop voltage implies a
higher energy source in the turbulent cascade !at branch
point A! shown in Fig. 1". This means that more energy can
be channeled to ion or electron heat. Furthermore, as the

limiter is inserted, the impurity concentration n, increases
!through sputtering". Thus from Eq. !16", 0ion, increases,
leading to a higher ion temperature. Note that we have not
included the possibility that a species may not be exactly
resonant since the damping rate also depends upon the ratio
exp!−R,

2" /exp!−R6
2". !If R,

2 /2%1, it implies the resonance
condition '−),1+2k&V&, is met." This ratio changes the
number of particles in the tail of the distribution function that
can interact with the waves. Note that even if the e /m ratio is
the same for two different species, the temperatures will ul-
timately be different. This is because !i" the damping rate
does not simply depend upon the e /m ratio, and !ii" species
with the same e /m ratio can still have different values of R,.
Finally, to be able to make the above observations about
simple dependencies, we have assumed typical temperature
values rather than computing consistently from a transport
model.

C. Wave to thermal energy conversion

To model temperature evolution driven by the cyclotron
absorption we must estimate the increase in perpendicular
thermal energy of each absorbing species through the wave
damping rates associated with the plasma dielectric tensor.
We focus first on the resonant conversion of wave energy to
thermal energy. We assume homogenous turbulence in a
torus of major radius R and minor radius a. The boundary
conditions are periodic on a scale much larger than the scale
of the turbulence. Then we have

n
%dT̃

dt
= Q! =

1
!:a2"!2:R"40

kcrit

'i!k/k0"−42 B̃2

2$0
3!4:k2"dk ,

!17"

where T̃ is the perpendicular temperature and Q! is the ion
cyclotron heating rate. The term 'i is the damping rate of the
wave, e is the charge, and !k /ko"−4 models the falloff in the
magnetic field fluctuation spectrum. We have assumed 4
=5 /3. This expression equates the change in thermal energy
with the Joule heating !ĴÊ* /2", where Ĵ is the kinetic
charged particle !current" response to the wave electric field
as calculated from the dielectric tensor.

As a special case of a one dimensional periodic box with
a discrete number of mode kn, we would have

n%
dT

dt
=

1
4L

Re24
−L

L

Ĵ . E*dx3 =
1
4 )

n=−7

7

!Ĵn . En
* + Ĵn

*En" .

!18"

This expression generalizes the results of Eq. !7.18" of Ref.
33 since it includes a large number of modes. From Max-
well’s equations, we have Ĵn=00En!knc2−'2" / i', where kn
=n: /L is the parallel wavenumber k& in the box. Substituting
and simplifying,
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n%
dT

dt
= Q! = − )

n=−7

7 200EnEn
*

2
3<2 kn

2c2

*'*2
+ 13 . !19"

The last bracketed term consists of two parts. The first part
<!00*E*2 /2"!kn

2c2 / *'*2" is the change in inductive electric
field energy. For simplicity, we refer it as <!*Bn

˜ *2 /2$0",
where *Bn

˜ *2 is the magnetic field fluctuation level. The sec-
ond part <!00*E*2 /2" is the contribution from Maxwell’s dis-
placement current. For illustration, let us momentarily ignore
the first part. The result is similar to Eq. !8" of Ref. 18,
provided we assume R=(1. The numerical solution of this
equation is illustrated in Fig. 3 of Ref. 18. The typical den-
sities used there are %1013 cm−3, close to the parameter re-
gime of MST. In Fig. 3 of Ref. 18, the temperature rises by a
factor of 10 in about 100 $s. Of course this illustration ig-
nores the term kn

2c2 / *'*2, which is orders of magnitude larger
for waves whose phase velocity is well below c. !See the
x-axis of Fig 2 of Ref. 18, where kc /)%100–1000." Con-
sequently, the predicted heating increases by a factor of
104–105. These increases are much larger than those of MST
because we have ignored for the moment the various loss
channels of the energy budget.

In Fig. 5, we illustrate the parametric variation of the
heating rate dT, /dt calculated from Eq. !17" as a function of
the level of magnetic field fluctuations #Fig. 5!b"$ and tem-
perature #Fig. 5!a"$. Note that the heating rate is a very
strong function of both these parameters. The x-axis in Fig.
5!b" is a measure of the low frequency fluctuations in the
system. For a RFP, this corresponds to the typical fluctuation
level for lower frequency tearing modes '.0.2 MHz !for
example see Fig. 14 of Ref. 1". Note that in this model we
have also assumed !00*Ẽ*2 /2"!k2c2 / *'*2"%*B̃*2 /2$0.

The ion heating mechanism detailed in this paper does
not produce appreciable ion heating in tokamaks. The typical

level of fluctuation in tokamaks is usually B̃ /Bo%10−5

−10−4. This gives a heating rate that is too low and easily
dominated by confinement losses. In the RFP, magnetic fluc-
tuations are usually larger !B̃ /Bo%10−3−10−1". In this situ-
ation the total heating is approximately 106–108 eV /s. This
becomes an important contribution even before a crash.
While the RFP confinement time is small !%1 ms" it is not
orders of magnitude smaller than the tokamak confinement
time. However, magnetic fluctuations are orders of magni-
tude larger. Thus, as illustrated in Fig. 5!b", anomalous ion
heating from magnetic fluctuations appears to be significant
only for the RFP. Figure 5!a" indicates that the anomalous
ion heating mechanism described herein is a strong function
of temperature. At higher temperatures, the heating de-
creases. Therefore the present mechanism is only significant
at low temperatures. This mechanism would not be expected
to produce significant ion heating in a reactor plasma.

IV. COLLISIONAL TRANSFER PROCESSES

The primary diagnostic for ion heating in MST is the
measurement of ion temperatures. Equation !17" describes
temperature evolution driven by ion cyclotron heating, but
does not account for the loss channels of the energy budget.
In this section we account for collisional transfer between
impurities and the bulk ions and examine the rates of transfer
for MST parameters.

When the plasma is isotropic and there is no relative
drift between the various species the thermal equilibration is
described by24

5dT,
dt
5

Collisions
= )
6

@/
,/6!T6 − T," , !20"

where @/
,/6 is given in cgs units by24

@/
,/6 = 1.8# 10−19!m,m6"1/2Z,

2Z6
2n69,6

!m,T, + m6T,"3/2 s−1. !21"

Using the isotropic equations #Eqs. !20"$, we test the
hypothesis that a small concentration of hot impurities is
sufficient to efficiently transfer energy to the bulk plasma.
For this purpose we have numerically solved Eq. !20" for a
contaminated plasma for the following parameters. The bulk
species is H1

+1 !with density n1=1#1013 cm−3" and the im-
purities are C12

+4!n2=0.2#1013 cm−3", C12
+5!n3=0.1

#1013 cm−3", O16
+5!n4=0.02#1013 cm−3" and O16

+6!n5=0.03
#1013 cm−3" so that ne=),n,Z,=2.58#1013 cm−3. This
means that n1 /ne=0.387, n2 /ne=0.077, n3 /ne=0.038, n4 /ne
=0.007, n5 /ne=0.011, and Zeff=),n,Z,

2 /ne=3.2. The as-
sumed initial temperatures !T,

initial" in units of eV were T1
=30, T2=300, T3=260, T4=350, T5=600. In this test, we
assume that a single minority species #here O!+6"$ has a high
temperature at t=0. For 9=16, these parameters imply @/

,/6

=2#103 s−1. The dynamical system was allowed to evolve
until a equilibrium was reached. The results of this test are
illustrated in Fig. 6!a". In the final state, the bulk ion tem-
perature !H+1 in this case" increases by a large amount
!roughly a factor of 3 , i.e. , 100 eV in about a hundred mi-
croseconds". Furthermore, the hot impurity cools down to the

10
0

10
−2

10
2

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

(b)

B̃/B̃o

dT
/d

t

0 500 1000
10

5

10
6

10
7

10
8

(a)

T
o

dT
/d

t

He+2

C+4

C+6

He+2

C+4

C+6
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as a function of magnetic field fluctuations !Bo=3#10−7". Note that for
small magnetic field fluctuations, the heating is quite low.
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same temperature. Sawtooth crash time scales in MST are on
the order of a ms, while the time between crashes is tens of
ms. We conclude that collisional equilibration of different
species is important in MST, and that impurities are an im-
portant heating source for the bulk plasma species.

Between sawtooth crashes the temperatures are essen-
tially stationary. Ion cyclotron heating continues at a lower
level because magnetic fluctuations are still present at a
lower level. In this situation the steady state is ultimately
governed by the irretrievable loss of heat due to transport out
of the plasma. If impurity heating exceeds bulk heating, and
Tc,+Ti transiently !at some arbitrary initial time", the bulk
ion species will equilibrate collisionally with the hotter im-
purity, and both will have elevated temperatures relative to a
situation without ion cyclotron heating. Such a scenario is
illustrated in Fig. 6!b". We assume a plasma that is a mixture
of several species, most of them with low concentrations.
The bulk ions are H+1, and are assumed to be the coolest ion
species. In this picture, one of the species, !O+6", is presumed
to be maintained at a high constant temperature by some
unspecified, external mechanism. It can be seen that the other
species are heated until equilibrium is reached. The equili-
bration time is on the order of a ms.

V. THERMAL EVOLUTION

We now assemble the remaining parts of the whole en-
ergy budget to create a system of 0D equations for tempera-
ture evolution. We include transport losses, and assume, as a
simplification, that confinement times are constant. Obvi-
ously, in non steady state systems, there is variation. For
example, during a sawtooth crash, the confinement times
evolve through their dependence on the changing magnetic
field, safety factor q, temperature, density, and gradients in
these quantities. In MST, electron heat confinement deterio-
rates markedly during a crash, leading to a transient dip in

electron temperature. This fact can also be used to argue that
electron-ion collisions are not particularly important for heat-
ing ions in these situations.

In constructing the temperature evolution equations we
consider first the situation in which perpendicular and paral-
lel temperatures are roughly equal. This is the situation that
has generally been reported in MST. However, as cyclotron
heating is a perpendicular energy source, we will subse-
quently examine anisotropic sources and anisotropic tem-
perature evolution.

A. Isotropic temperatures

The temperature evolution equation is given by

d%T,
dt

= )
6

@e
,/6!%T6 − %T," + )

6

@e
6/e!%Te − %T6" + Q!

−
%T,
&c,

. !22"

This is a system of several equations where , is an index for
each species with temperature T,. The first term here is the
ion-ion equilibration term. Summing over ,, this term makes
no net contribution to the increase or decrease in the total
thermal energy of the particles. The next term is the electron-
ion collision term. Like the previous term, it makes no net
increase or decrease in the total thermal energy of the par-
ticles. The third term is the ion cyclotron damping term. This
term is the most important heating term in our model. Fi-
nally, the last term describes confinement loss modeled as a
linear term with a constant energy confinement time.

If we write an energy evolution equation for the elec-
trons we have

d%Te

dt
=

e2E2&ei

me
+ )
6

@e
e/6!%T6 − %Te" + Qe −

%Te

&ce
. !23"

In this expression the first term refers to direct Ohmic heat-
ing, and the second term is the collisional energy exchange
between electrons and ions. Note that the sum of this and the
corresponding term in the ion equation is zero !i.e., equili-
bration". The next term represents the heating of electrons by
electron Landau damping. The final term is the loss term and
leads to saturation. Here, the parameter &ce models electron
confinement during a crash. As mentioned earlier, it has been
assumed to be a constant. The coupling between Eq. !22" and
Eq. !23" is weak since collisions are too infrequent. In this
work, the physics of branch point B! allows us to assume
dynamics of the cascade and particle heating is a constant
fraction 0for /0%0.5 of the rest of the power balance. We can
also compare the above result with previous calculations of
the dielectric response of the plasma near the ion cyclotron
frequency by Svidzinski.34 These results differ by a constant
factor.

B. Anisotropic temperatures

In a strong external magnetic field, ions experiencing
cyclotron heating predominantly gain energy in the perpen-
dicular direction. Macroscopically, the energy deposition rate
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FIG. 6. !Color online" Equilibration of multiple species. !a" Relaxation with
a hot impurity !O+6" at t=0; !b" Relaxation with one species !O+6" continu-
ously heated. Temperatures were assumed isotropic.
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is much higher in the perpendicular direction. The collision
cross sections, which are velocity dependent, can no longer
be assumed to be isotropic.

Consider ion velocity distributions that are not isotropic
but are bi-Maxwellian characterized by two temperatures T&

and T!. In the simplest approximation, we can assume a
bi-Maxwellian distribution which retains its shape on ion
cyclotron heating time scales. On collisional time scales, we
assume that T& and T! evolve, but still uniquely characterize
the distribution function. We have also assumed that T&,,
T!,, and n, are all independent of x, y, and z. The general
collisional momentum and energy transport terms for inter-
penetrating bi-Maxwelian distributions were first computed
by Barakat and Schunk,25 and later improved and applied to
the solar corona models by several authors.26 The model
used here is based on Eqs. !1" of Cranmer et al.26 To arrive at
the equations below, we have assumed that all species !la-
beled by the index i" drift together with the same velocity
!i.e., ui=u", and thus Eq. !1" of Ref. 26 can be transformed to
an inertial frame moving with that velocity. We assume the
electron temperature remains isotropic because of !i" the high
electron collision frequency !e.g., in MST the electron-
electron collision frequency satisfies &ee%100&ii, where &ii is
a typical deuterium-deuterium collision time"; !ii" high elec-
tron cyclotron frequency !'()ce"; and !iii" small Landau
damping !*'−k ·v*21". The equations we have used are

1
2

n,%
$T&,

$t
= )

p
#C&,p!T&p − T&," + mpJ&,p$ , !24"

n,%
$T!,

$t
= Q!, + )

p
#C!,p!T!p − T!," + mpJ!,p$ , !25"

where n, is the ion number density, mp is the mass of species
p, and Q!, is the ion cyclotron-resonant heating rate. The
coefficients C&,p and C!,p govern the collisional energy ex-
change between ions in the absence of flows. These terms
only lead to equilibration between several species !i.e., no
isotropization". The terms mpJ&,p and mpJ!,p describe Joule
heating and isotropization from collisions. In the special case
of a pure plasma !i.e., just one species in the above equa-
tion", the terms J&,p and J!,p lead to a collisional equilibra-
tion between T& and T!. Expressions for mp, C&,p, C!,p, J&,p,
and J!,p can be found in Ref. 26.

Confinement losses are modeled using approximate con-
finement times &c&, and &c!, for ions and impurities, and &ce
for electrons,

5dT!,

dt
5

losses
= −

T!,

&c!,
, 5dT&,

dt
5

losses
= −

T&,

&c&,
, !26"

5dTe

dt
5

losses
= −

Te

&ce
. !27"

Consistent with the weak temperature anisotropy of MST we
will use a heating rate Q!i calculated from ion cyclotron
damping in an isotropic plasma, as calculated in Sec. III.

Under the above approximations, we study the evolution
of Eqs. !24" and !25" until an equilibrium is reached. The
system is initiated with a low initial temperature. These cal-

culations are summarized in Fig. 7 for different values of the
density. The bulk species is D+1 and the impurity is C+4. The
four initial temperatures are taken in the range 26–28 eV but
not exactly the same to ensure finite temperature equilibra-
tion terms at t=0. Note that as density is decreased, ion
temperature increases as observed in experiments. For ex-
ample, Rostagni recently surveyed some confinement results
on RFP machines, particularly the density dependence of ion
temperature.35 Observations in Fig. 7 agree qualitatively with
Fig. 3 of Ref. 35. Note that a higher density plasma tends to
be more isotropic. The anisotropy of temperature T& /T! in-
creases as density is decreased. Such a prediction finds fa-
vorable evidence from experiment, particularly Ref. 4, in
which the density dependence of anisotropy was studied on
the EXTRAP-T2 machine.

We analyze the effect of the transient increase of fluctu-
ating magnetic field associated with a sawtooth crash. At the
crash, both core and edge modes are excited, and ion heating
is strong. The crash has been simulated by using the periodic
function B̃2=Ao exp#−r)i sin!tki" /ki$, where r and Ao are
constants. An actual sawtooth oscillation may have different
rise and fall times. Nevertheless, several essential features
can be illustrated in this way by using a pulse with a rise
time of a few hundred microseconds and a peak value of B̃
%3#10−7 T. This approximate value is consistent with ex-
perimental spectra in the ion cyclotron frequency range !see
Fig. 14 of Ref. 1". Such a form !normalized to 1 for illustra-
tion" is indicated in Fig. 8!c" by the thin line. A system of
two species has been allowed to relax under the periodic
drive and the transients ignored. Figures 8!a"–8!c" are evo-
lutions of parallel and perpendicular temperatures for in-
creasing density. This figure has several notable features: !i"
heating increases with deceasing density, !ii" the heating rate
of impurities is higher than that of the bulk species, and !iii"

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

500

1000

1500

2000
(a) Fraction= 0.25

T α
(e

V
)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

500

1000

T α
(e

V
)

(b) Fraction= 0.5

T
||

[D]

T
||

[C]

T⊥ [D]

T⊥ [C]

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

200

400

600

Time (ms)

T α
(e

V
)

(c) Fraction= 1

FIG. 7. !Color online" Ion temperature as a function of time for various
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the magnitude of heating is comparable to experiments. As
mentioned in the Introduction, these are the main features of
experiments. The impurity temperature rises above the bulk
ion temperature, despite the fact that bulk ion growth rates,
as seen from Eq. !11", tend to be larger. The growth rates are
proportional to density through the 'p,

2 dependence of Eq.
!11". As seen from Eq. !22" the time rate of change of tem-
perature is proportional to <, /n,, so the density scaling of
'p,

2 cancels out. The stronger heating of impurities relative
to bulk ions comes essentially from the larger wave fluctua-
tion energy at the lower resonant wavenumber.

In the MST, the ion temperature has been reported to be
isotropic away from a crash possibly due to thermal equili-
bration. However in the EXTRAP-T2 plasmas, the parallel
temperature is found to dominate the perpendicular tempera-
tures !T&+T!" for low density plasmas.4 This may suggest
that some additional parallel heating mechanism is present.
However an alternate possibility may be found in Figs. 8.
Notice that in this figure, T!!D" is lower than T&!D" but
T&!C".T!!C". In a complex system like the EXTRAP-T2
where several species are present, it may be possible to have
a higher parallel temperature.

VI. SUMMARY AND CONCLUSIONS

Anomalous ion heating in reversed field pinches is not
understood despite extensive work on the subject. Recent
observations, e.g., T,+Ti+Te, are difficult to explain using
known conventional theories. In this article, impurity ion
heating during a sawtooth crash by a cascade of Alfvén
waves has been investigated. This mechanism was previ-
ously proposed8 for anomalous bulk ion heating but met dif-
ficulty in explaining bulk ion temperature. In this mecha-
nism, the energy is distributed according to the energy

budget and the branching ratios of Fig. 1. During a sawtooth
crash, the energy in the fluctuations increase dramatically.
The energy budget dictates that only a part of this energy is
available for ion heating !through a cascade of shear Alfvén
waves driven at large scale by the unstable global tearing
modes". The heavier mass of some species allows them to be
gyro-resonant at lower frequencies, where more energy is
present in the fluctuations. We have used isotropic and an-
isotropic heating rates from the plasma dielectric tensor to
numerically calculate heating rates. Collisional transfer dy-
namics are solved using a 0D thermal equilibrium model.

Our simulations reveal several features consistent with
experiment. Impurity ions are found to be hotter than the
bulk species.1 The calculated heating rates are sufficient to
account for the observed rise in impurity temperatures, pro-
vided ions are primarily heated by ion cyclotron resonance.
We have computed the various branching ratios that deter-
mine relative heating rates of electrons versus the bulk and
impurity ions !i.e., electron Landau and ion cyclotron damp-
ing". The contribution to total heating from electron Landau
damping is small; electrons are heated predominantly by re-
sistive heating. We have shown that if one impurity species is
heated to a high temperature, it can collisionally transfer a
large portion of its energy to the bulk species, even though
the density is low. The energy transfer rate is compatible
with rise times of bulk ion temperature in MST after a saw-
tooth crash. Hot electrons cannot efficiently transfer their
energy to the bulk. The above observations can be attributed
to the following physical properties: !i" predominantly per-
pendicular ion cyclotron heating, !ii" density dependence of
the Alfvén wave dispersion relation, and !iii" significant
amount of fluctuations being present at the impurity cyclo-
tron frequency.

We have also studied the anisotropic relaxation of a con-
taminated bi-Maxwellian plasma and reproduced several fea-
tures generally observed in discharges,1,4,31,35 particularly
those associated with density dependence. We have found
that a higher density plasma tends to be more colder and
more isotropic. The parallel temperature T& can be significant
and comparable to the perpendicular temperature T!. This
can be attributed to the presence of collisions in the system.
The anisotropy of temperature T& /T! increases as density is
decreased. Furthermore, the model also explains why experi-
ments on HBTX-1B gave a higher temperature31 when the
limiter was inserted into the plasma.

The model has several limitations based on the assump-
tions that have been made. Most importantly, it is based on
the assumption that parallel propagating Alfvén waves are
responsible for the observed ion heating. It assumes k!5i
(1 and k!(k&. It assumes constant confinement time which
may not be true in reality. The absolute relative drift between
various species is assumed to be negligible. It assumes that
parallel heating is negligible. It assumes collisions do not
modify the dielectric tensor. The results derived herein will
change if k! finite is allowed. While testing for such changes
will be instructive, it is not clear that they will lead to a more
accurate estimate of ion heating in the RFP. This is because
refinements to the wave idealization do not address the more
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fundamental issue of accurately representing the bound
eigenstates of the RFP.

This model also has implications for temperature mea-
surements in experiments. A significant amount of heating
implies that the bulk species and impurities are not in equi-
librium and therefore spectroscopic measurements of impu-
rity temperature cannot be directly assumed as an estimate
for the bulk temperature unless an estimate of bulk heating is
made. This observation also implies a limitation of the above
model.
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